admin / 21.12.2019

Сжиженный газ это какой газ

Сжиженный природный газ (СПГ), технологии сжижения

ИА Neftegaz.RU. Сжиженный природный газ (СПГ) — природный газ, искусственно сжиженный путем охлаждения до -160°C, для облегчения хранения и транспортировки.

СПГ представляет собой бесцветную жидкость без запаха, плотность которой в 2 раза меньше плотности воды.
На 75-99% состоит из метана. Температура кипения − 158…−163°C.
В жидком состоянии не горюч, не токсичен, не агрессивен.
Для использования подвергается испарению до исходного состояния.
При сгорании паров образуется диоксид углерода( углекислый газ, CO2) и водяной пар.
В промышленности газ сжижают как для использования в качестве конечного продукта, так и с целью использования в сочетании с процессами низкотемпературного фракционирования ПНГ и природных газов, позволяющие выделять из этих газов газовый бензин, бутаны, пропан и этан, гелий.
СПГ получают из природного газа путем сжатия с последующим охлаждением.
При сжижении природный газ уменьшается в объеме примерно в 600 раз.
Перевод 1 тонны СПГ в кубометры (м3). 1 тонна СПГ — это примерно 1,38 тыс м3 природного газа после регазификации.
Примерно — потому что плотность газа и компонентный на разных месторождения разная.
Формулу Менделеева — Клайперона никто не отменял.
Кроме метана в состав природного газа могут входить: этан, пропан, бутан и некоторые другие вещества.
Плотность газа изменяется в интервале 0,68 — 0,85 кг/м³, но зависит не только от состава, но и от давления и температуры в месте расчета плотности газа.
Стандартные условия для температуры и давления – это установленные стандартом физические условия, с которыми соотносят свойства веществ, зависящие от этих условий.
Национальный институт стандартов и технологий (NIST) устанавливает температуру 20 °C (293,15 K) и абсолютное давление 1 атм (101.325 кПа), и этот стандарт называют нормальной температурой и давлением (NTP).
Плотность компонентов газа сильно различается:
Метан — 0,668 кг/м³,
Этан — 1,263 кг/м³,
Пропан — 1,872 кг/м³. Поэтому, в зависимости от компонентного состава изменяется и количество м3 газа при переводе из тонн.
Процесс сжижения идет ступенями, на каждой из которых газ сжимается в 5-12 раз, затем охлаждается и передается на следующую ступень. Собственно сжижение происходит при охлаждении после последней стадии сжатия.
Процесс сжижения таким образом требует значительного расхода энергии — до 25 % от ее количества, содержащегося в сжиженном газе.

Ныне применяются 2 техпроцесса:

  • конденсация при постоянном давлении (компримирование), что довольно неэффективно из-за энергоемкости,
  • теплообменные процессы: рефрижераторный — с использованием охладителя и турбодетандерный/дросселирование с получением необходимой температуры при резком расширении газа.

В процессах сжижения газа важна эффективность теплообменного оборудования и теплоизоляционных материалов.

При теплообмене в криогенной области увеличение разности температурного перепада между потоками всего на 0,5ºС может привести к дополнительному расходу мощности в интервале 2 — 5 кВт на сжатие каждых 100 тыс м3 газа.

Недостаток технологии дросселирования — низкий коэффициент ожижения — до 4%, что предполагает многократную перегонку.

Применение компрессорно-детандерной схемы позволяет повысить эффективность охлаждения газа до 14 % за счет совершения работы на лопатках турбины.

Термодинамические схемы позволяют достичь 100% эффективности сжижения природного газа:

  • каскадный цикл с последовательным использованием в качестве хладагентов пропана, этилена и метана путем последовательного снижения их температуры кипения,
  • цикл с двойным хладагентом — смесью этана и метана,
  • расширительные циклы сжижения.

Известно 7 различных технологий и методы сжижения природного газа:

  • для производства больших объемов СПГ лидируют техпроцессы AP-SMR™, AP-C3MR™ и AP-X™ с долей рынка 82% компании Air Products,
  • технология Optimized Cascade, разработанная ConocoPhillips,
  • использование компактных GTL-установок, предназначенных для внутреннего использования на промышленных предприятиях,
  • локальные установки производства СПГ могут найти широкое применение для производства газомоторного топлива (ГМТ),
  • использование морских судов с установкой сжижения природного газа (FLNG), которые открывают доступ к газовым месторождениям, недоступным для объектов газопроводной инфраструктуры,
  • использование морских плавающих платформ СПГ, к примеру, которая строится компанией Shell в 25 км от западного берега Австралии.

Процесс сжижения газа:

Оборудование СПГ-завода:

  • установка предварительной очистки и сжижения газа,
  • технологические линии производства СПГ,
  • резервуары для хранения, в тч специальные криоцистерны, устроенные по принципу сосуда Дюара,
  • для загрузки на танкеры — газовозы,
  • для обеспечения завода электроэнергией и водой для охлаждения.

Существует технология, позволяющая сэкономить на сжижении до 50% энергии, с использованием энергии, теряемой на газораспределительных станциях (ГРС) при дросселировании природного газа от давления магистрального трубопровода (4-6 МПа) до давления потребителя (0,3-1,2 МПа):

  • используется как собственно потенциальная энергия сжатого газа, так и естественное охлаждение газа при снижении давления.
  • дополнительно экономится энергия, необходимая для подогрева газа перед подачей к потребителю.

Чистый СПГ не горит, сам по себе не воспламеняем и не взрывается.
На открытом пространстве при нормальной температуре СПГ возвращается в газообразное состояние и быстро растворяется в воздухе.
При испарении природный газ может воспламениться, если произойдет контакт с источником пламени.
Для воспламенения необходимо иметь концентрацию испарений в воздухе от 5 % до 15 %.
Если концентрация до 5 %, то испарений недостаточно для начала возгорания, а если более 15 %, то в окружающей среде становится слишком мало кислорода.
Для использования СПГ подвергается регазификации — испарению без присутствия воздуха.
СПГ является важным источником энергоресурсов для многих стран, в том числе Японии ,Франции, Бельгии, Испании, Южной Кореи.

Транспортировка СПГ- это процесс, включающий в себя несколько этапов:

  • морской переход танкера — газовоза,
  • автодоставка с использованием спецавтотранспорта,
  • ж/д доставка с использованием вагонов-цистерн,
  • регазификация СПГ до газообразного состояния.

Регазифицированный СПГ транспортируется конечным потребителям по газопроводам.

Основные производители СПГ по данным 2009 г:

Производство СПГ в России

На 2018 г в РФ действует 2 СПГ-завода.

СПГ-завод проекта Сахалин-2 запущен в 2009 г, контрольный пакет принадлежит Газпрому, у Shell доля участия 27,5%, японских Mitsui и Mitsubishi — 12,5% и 10% .

По итогам 2015 г производство составило 10,8 млн т/год, превысив проектную мощность на 1,2 млн т/год.

Однако из-за падения цен на мировом рынке доходы от экспорта СПГ в долларовом исчислении сократились по сравнению с 2014 г на 13,3% до 4,5 млрд долл США/год.

2м крупным игроком на рынке российского СПГ становится компания НОВАТЭК, которая в январе 2018 г ввела в эксплуатацию СПГ — завод на проекте Ямал-СПГ.

Новатэк-Юрхаровнефтегаз (дочернее предприятие Новатэка ) выиграл аукцион на право пользования Няхартинским участком недр в ЯНАО.

Няхартинский участок недр нужен компании для развития проекта Арктик СПГ. Это 2й проект Новатэка, ориентированный на экспорт СПГ.

В США введены в эксплуатацию 5 терминалов по экспорту СПГ общей мощностью 57,8 млн т/год.

На европейском газовом рынке началось жесткое противостояние американского СПГ и российского сетевого газа.

Пропан, получение, свойства, химические реакции.

Пропан, C3H8 – органическое вещество класса алканов. В природе содержится в природном газе, добываемом из газовых и газоконденсатных месторождений, в попутном нефтяном газе. Образуется также при крекинге нефтепродуктов.

Пропан, формула, газ, характеристики

Физические свойства пропана

Химические свойства пропана

Получение пропана

Химические реакции – уравнения получения пропана

Применение и использование пропана


Пропан, формула, газ, характеристики:

Пропан (лат. propanum) – органическое вещество класса алканов, состоящий из трех атомов углерода и восьми атомов водорода.

Химическая формула пропана C3H8, рациональная формула CH3CH2CH3. Изомеров не имеет.

Строение молекулы:

Пропан – бесцветный газ, без вкуса и запаха. Однако в пропан, используемый в качестве технического газа, могут добавляться одоранты – вещества, имеющие резкий неприятный запах для предупреждения его утечки.

В природе содержится в природном газе, добываемом из газовых и газоконденсатных месторождений, в попутном нефтяном газе. Для выделения из природного и попутного нефтяного газа производят их очистку и сепарацию газа.

Образуется также при крекинге нефтепродуктов., в т.ч. сланцевой нефти.

Также содержится в сланцевом газе и сжиженном газе (сжиженном природном газе).

Пожаро- и взрывоопасен.

Не растворяется в воде и других полярных растворителях. Зато растворяется в некоторых неполярных органических веществах (метанол, ацетон, бензол, тетрахлорметан, диэтиловый эфир и другие).

Пропан по токсикологической характеристике относится к веществам 4-го класса опасности (малоопасным веществам) по ГОСТ 12.1.007.


Физические свойства пропана:

Наименование параметра: Значение:
Цвет без цвета
Запах без запаха
Вкус без вкуса
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) газ
Плотность (при 20 °C и атмосферном давлении 1 атм.), кг/м3 1,8641
Плотность (при температуре кипения и атмосферном давлении 1 атм.), кг/м3 585
Температура плавления, °C -187,6
Температура кипения, °C -42,09
Температура самовоспламенения, °C 472
Критическая температура*, К 370
Критическое давление, МПа 4,27
Критический удельный объём, м3/кг 0,00444
Взрывоопасные концентрации смеси газа с воздухом, % объёмных от 1,7 до 10,9
Удельная теплота сгорания, МДж/кг 48
Молярная масса, г/моль 44,1

* при температуре выше критической температуры газ невозможно сконденсировать ни при каком давлении.


Химические свойства пропана:

Пропан трудно вступает в химические реакции. В обычных условиях не реагирует с концентрированными кислотами, расплавленными и концентрированными щелочами, щелочными металлами, галогенами (кроме фтора), перманганатом калия и дихроматом калия в кислой среде.

Химические свойства пропана аналогичны свойствам других представителей ряда алканов. Поэтому для него характерны следующие химические реакции:

  1. 1. каталитическое дегидрирование пропана:

CH3-CH2-CH3 → CH2=CH-CH3 + H2 (kat = Pt, Ni, Al2O3, Cr2O3, to = 575 °C).

  1. 2. галогенирование пропана:

CH3-CH2-CH3 + Br2 → CH3-CHBr-CH3 + HBr (hv или повышенная to);

CH3-CH2-CH3 + I2 → CH3-CHI-CH3 + HI (hv или повышенная to).

Реакция носит цепной характер. Молекула брома или йода под действием света распадается на радикалы, затем они атакуют молекулы пропана, отрывая у них атом водорода, в результате этого образуется свободный пропил CH3-CH·-CH3, который сталкиваются с молекулами брома (йода), разрушая их и образуя новые радикалы йода или брома:

Br2 → Br·+ Br· (hv); – инициирование реакции галогенирования;

CH3-CH2-CH3 + Br· → CH3-CH·-CH3 + HBr; – рост цепи реакции галогенирования;

CH3-CH·-CH3 + Br2 → CH3-CHBr-CH3 + Br·;

CH3-CH·-CH3 + Br· → CH3-CHBr-CH3; – обрыв цепи реакции галогенирования.

Галогенирование — это одна из реакций замещения. В первую очередь галогенируется наименее гидрированый атом углерода (третичный атом, затем вторичный, первичные атомы галогенируются в последнюю очередь). Галогенирование пропана проходит поэтапно – за один этап замещается не более одного атома водорода.

CH3-CH2-CH3 + Br2 → CH3-CHBr-CH3 + HBr (hv или повышенная to);

CH3-CHBr-CH3 + Br2 → CH3-CBr2-CH3 + HBr (hv или повышенная to);

и т.д.

Галогенирование будет происходить и далее, пока не будут замещены все атомы водорода.

  1. 3. нитрование пропана:

См. нитрование этана.

  1. 4. окисление (горение) пропана:

При избытке кислорода:

C3H8 + 5O2 → 3CO2 + 4H2O.

Горит желтым пламенем.

При нехватке кислорода вместо углекислого газа (СО2) получается оксид углерода (СО), при еще меньшем количестве кислорода выделяется мелкодисперсный углерод (в различном виде, в т.ч. в виде графена, фуллерена и пр.) либо их смесь.

  1. 5. сульфохлорирование пропана:

C3H8 + SO2 + Cl2 → C3H7-SO2Cl + … (hv).

  1. 6. сульфоокисление пропана:

2C3H8 + 2SO2 + О2 → 2C3H7-SO2ОН (повышенная to).


Получение пропана. Химические реакции – уравнения получения пропана:

Так как пропан в достаточном количестве содержится в природном газе, попутном нефтяном газе и выделяется при крекинге нефтепродуктов, его не получают искусственно. Его выделяют при очистке и сепарации из природного газа, ПНГ и нефти при перегонке.

Пропан в лабораторных условиях получается в результате следующих химических реакций:

  1. 1. гидрирования непредельных углеводородов, например, пропена:

CH3-CH=CH2 + H2 → CH3-CH2-CH3 (kat = Ni, Pt или Pd, повышенная to).

  1. 2. восстановления галогеналканов:

C3H7I + HI → C3H8 + I2 (повышенная to);

C3H7Br + H2 → C3H8 + HBr.

  1. 3. взаимодействия галогеналканов с металлическим щелочным металлом, например, натрием (реакция Вюрца):

C2H5Br + СH3Br + 2Na → CH3-CH2-CH3 + 2NaBr;

C2H5CI + СH3Cl + 2Na → CH3-CH2-CH3 + 2NaCl.

Суть данной реакции в том, что две молекулы галогеналкана связываются в одну, реагируя с щелочным металлом.

  1. 4. декарбоксилирования масляной кислоты и ее солей:

C3H7-COOH + NaOH → C3H8 + Na2CO3 (повышенная to);

C3H7-COONa + NaOH → C3H8 + NaHCO3.

Применение и использование пропана:

– в качестве топлива в быту для приготовления пищи, транспортных средствах, в отопительных приборах и т.п. Как топливо пропан более удобен, чем метан. Пропан сжижается при комнатной температуре и давлении 12-15 атмосфер, что делает возможным его хранение и транспортировку как в обычных, так и более легких – композитных баллонах;

– для проведения различных технологических операций, например, газопламенных работ;

– как сырье в химической промышленности для производства других химических веществ, например, растворителей, полипропилена;

– в пищевой промышленности как пищевая добавка E944, используемая в качестве пропеллента;

– как хладагент в холодильниках, холодильных камерах, холодильных установках и системах кондиционирования воздуха. Используется в смеси с изобутаном. В отличие от других хладагентов данная смесь не разрушает озоновый слой.

Примечание: © Фото //www.pexels.com, //.com

Почему под давлением?

Скачать статью (4.36 MБ)

Гелий, азот, кислород, водород и аргон чаще всего попадают к конечным потребителям в газовых баллонах высокого давления. Природный газ все шире применяется как моторное топливо, причем тоже в сжатом виде, и называют его в этом случае КПГ – компримированный природный газ. Большинство промышленных газов применяются потребителями в газообразном виде. Гелий применяют для сварки, в аналитике и при испытаниях оборудования на герметичность. Аргон незаменим в качестве защитной газовой среды и в электроламповой промышленности, водород в аналитике и стекольной промышленности, кислород в процессах резки и горения, а азот как защитная инертная газообразная атмосфера и в других самых разнообразных применениях.

Почему газы хранят и транспортируют под высоким давлением? Газы не имеют формы. Их можно хранить и транспортировать только в замкнутых герметичных оболочках или в сконденсированном охлажденном виде. То есть для того что работать со сколько-нибудь заметными количествами газов, необходимо существенно увеличить их плотность. Сравним, например, плотность в кг/м3 и коэффициент сжимаемости самых распространенных технических газов: азота, кислорода, метана и гелия при различных давлениях. Для сравнения так же приведена плотность этих веществ в сжиженном виде в состоянии равновесия.

При низких давлениях плотность сжатых газов практически пропорциональна давлению. Чем выше давление, тем существеннее становится отклонение свойств реальных газов от уравнения состояния идеального газа. На свойства газов начинает оказывать влияние собственный объем молекул и их силовое взаимодействие.

Изучение свойств реальных газов и жидкостей стало основным направлением научных исследований выдающегося голландского ученого Йоханнеса Дидерика Ван дер Ваальса (1837-1923), который прославился своими работами в области молекулярной физики. Йоханнес Дидерик родился в семье плотника, в которой он был старшим из десяти детей. Семья не имела средств и стремления к обучению своих детей в гимназии. Йоханнес окончил начальную и среднюю школу и стал, как один из лучших выпускников, школьным учителем. Он не имел права поступать в университет, но посещал лекции по математике, физике и астрономии в Лейденском университете как вольнослушатель, затем сдал сложный экзамен на право работы школьным учителем и стал директором школы в Гааге. К этому времени университетские правила в Голландии смягчились. Студентов освободили от обязательного предварительного классического образования в гимназиях, и Ван дер Ваальс смог поступить в аспирантуру. 14 июня 1873 года в Лейдене он защитил докторскую диссертацию «О непрерывности газообразного и жидкого состояния». Ван дер Ваальс модернизировал уравнение идеального газа до уравнения состояния реального газа, которое сейчас носит его имя. Силы межмолекулярного взаимодействия ныне называют ван-дер-ваальсовыми. Уравнение состояния реального газа помогло математически объяснить одно ранее непонятное явление, а именно: если температура газа превышает некоторую критическую (для данного вещества величину), то никакие изменения давления не смогут вызвать его сжижения. Дело в том, что при критических температурах все три корня уравнения Ван дер Ваальса сливаются в один. Именно за эти работы над уравнениями состояния газов и жидкостей ученому была присуждена Нобелевская премия в 1910 году.

Из данных представленных в таблице хорошо видно, что плотность реальных сжатых газов растет при повышении давления не в соответствии с уравнением идеального газа. Для таких газов, как аргон, кислород и метан, коэффициент сжимаемости при средних давлениях от 100 до 300 бар меньше единицы и отклонения в поведении этих газов от уравнения идеального газа облегчают их хранение и транспортировку. Для других распространенных газов, таких как гелий, водород и азот, коэффициент сжимаемости при комнатной температуре больше единицы для всех значений давления.

Повышение рабочего давления стальных баллонов свыше 400 бар для целей транспортировки становится нерациональным практически для всех технических газов и ограничено значительным ростом коэффициента сжимаемости, который достигает, например для азота, значения 2.0 при давлении около 900 бар. Если для кислорода, аргона и природного газа влияние сжимаемости до давления 300 бар приводит к небольшому сокращению удельного веса тары, а при давлении 400 бар это влияние можно признать незначительным, то для гелия и азота это уже не так. Сравним для этих газов соотношение массы газа к массе баллона без учета вентиля для наиболее распространенных рабочих давлений (200, 300 и 400 бар) применительно к облегченным баллонам всемирно признанного лидера рынка – компании Worthington Cylinders. Расчет выполнен для баллонов объемом 50 литров с рабочим давлением 200 и 300 бар и объемом 55 литров с давлением 400 бар. Для азота это соотношение равно соответственно 0.24; 0.23 и 0.21, а для гелия 0.033; 0.034 и 0.033. Небольшое снижение металлоемкости тары для гелия при переходе с рабочего давления 300 бар на рабочее давление 400 бар cвязано с увеличением объема баллона и соответственно со снижением относительной доли дна и горловины баллонов в общей металлоемкости. При транспортировке азота увеличение давления приводит, хоть и к незначительному, но к явному увеличению металлоемкости тары, а при перевозке гелия металлоемкость тары практически не зависит от рабочего давления баллонов. Это означает, что увеличение рабочего давления приводит к сокращению транспортных издержек не за счет снижения металлоемкости груза, а только за счет резкого сокращения размеров пространства, занимаемого моноблоками и баллонами и сокращения количества необходимых доставок. Транспортировка гелия под давлением 400 бар облегчает его дальнейшую переработку: очистку и расфасовку в баллоны с меньшим рабочим давлением. Существует целый ряд практических применений, для которых необходимо повышенное давление газов 300-400 бар. Это применение азота, воздуха и гелия при испытаниях на прочность и герметичность. Гелий удобен для применения в низкотемпературных испытаниях на прочность при температуре жидкого азота. Гелий и аргон высокого давления применяют в медицине и других отраслях техники в связи с существенным и разнонаправленным дроссель-эффектом. Аргон при дросселировании охлаждается, а гелий наоборот нагревается.

Поршневые насосные агрегаты с насосами ACD RPB для кислорода и аргона

Из перечисленных газов только на азот и гелий есть постоянная большая потребность как на хладоносители в сжиженном виде. Жидкий аргон иногда используется для научных исследований в пузырьковых камерах. Другие газы потребители применяют, главным образом, в виде газа. Поэтому при выборе способа хранения и транспортировки руководствуются объемами потребления и экономической целесообразностью того или иного технического решения. Когда это удается, газы доставляют к месту потребления от мест производства по трубопроводам. Если такая возможность отсутствует, газы сжижают, перевозят к месту потребления и газифицируют или доставляют на наполнительные станции, а уже там заправляют в баллоны под высоким давлением и доставляют конечным потребителям в баллонах или в моноблоках (баллонных сборках).

Поршневой насосный агрегат с вертикальным насосом ACD P2K для сжиженного природного газа

Ранее все технические сжатые газы хранили и транспортировали при давлении 150 бар. И происходило это только потому, что промышленность не выпускала массово баллоны на другие рабочие давления. Теперь баллоны с таким рабочим давлением уже называют устаревшими, хотя реальный их парк еще велик. Продукты разделения воздуха и водород хранят и перевозят при давлениях 200 и 300 бар, природный газ при давлении 250 и 300 бар (рабочее давление автомобильных баллонов 200 бар), гелий транспортируется при давлении 400 бар, азот и сжатый воздух часто хранят при давлении 400 бар. Нередко в тех или иных технологических процессах требуются газы с более высоким значением давления, которое создают непосредственно на месте применения с помощью дожимающих компрессоров или криогенных поршневых насосов. Это, например, природный газ с давлением 600-690 бар при непосредственном впрыске в специализированные поршневые двигатели внутреннего сгорания; автомобильные водородные баки на рабочее давление 800 бар; аргон или азот в газостатах; азот при проведении испытаний на прочность и разрушение; азот при давлении 800 бар и более для повышения нефтеотдачи скважин; аргон как рабочая среда при получении холода в дроссельных циклах за счет эффекта Джоуля-Томпсона и т.п. Таким образом, массовое применение в технике все более высоких давлений следует сразу за разработкой соответствующих средств заправки и хранения газов. Чем выше плотность хранимого и транспортируемого вещества, тем компактнее система хранения и может быть более явным то или иное преимущество конкретного технологического процесса, обусловленного высоким давлением. По мере развития техники хранения сжатых газов меняются материалы и снижается вес тары. Углеродистая сталь, применявшаяся для производства баллонов на 150 бар, сменилась легированной. Появились и постоянно развиваются облегченные баллоны сначала второго, а затем третьего и четвертого типа. Специалисты компании Worthington Industries постоянно работают над улучшением потребительских свойств и расширением ассортимента как стальных кованных, так и металлокомпозитных баллонов высокого давления.

Пароэлектрический испаритель большой производительности с промежуточным теплоносителем в виде алюминиевого блока

Компания Мониторинг Вентиль и Фитинг (MV&F) является официальным складским дистрибьютором Worthington Industries. На совместном складе Worthington Industries и MV&F в Москве постоянно поддерживается большой ассортимент кованых стальных баллонов высокого давления с рабочим давлением 200, 250, 300 и 400 бар для гелия, водорода, кислорода, аргона, углекислоты и газовых смесей, азота, воздуха и природного газа. Наше предприятие специализируется так же на поставке и изготовлении основных компонентов наполнительных станций: криогенные емкости для приема и хранения сжиженных продуктов разделения воздуха и сжиженного природного газа; криогенные металлорукава с экранно-вакуумной изоляцией; поршневые насосные агрегаты со шкафами автоматизации и управления; атмосферные испарители высокого давления как с естественной, так и с принудительной конвекцией воздуха; электрические и паровые испарители и нагреватели, наполнительные рампы, моноблоки и баллонные аккумуляторы газа.

Поршневые насосные агрегаты предлагаются с насосами всемирного лидера отрасли — компании ACD — как горизонтального типа (RPB, ACPD), так и высокопроизводительные для тяжелых условий эксплуатации вертикального типа (P2К). Рабочие давления от 240 до 420 бар.

Для газификации продуктов разделения воздуха и сжиженного природного газа компания MV&F производит атмосферные испарители высокого давления, как с естественной, так и с принудительной конвекцией воздуха, а так же электрические и паровые испарители высокого давления.

Дожимающий двухступенчатый компрессорный агрегат MV&F с двойным пневматическим поршнем, максимальное давление 1725 бар

Если для целей конкретного технологического процесса нужны более высокие значения давления сжатых газов, то здесь существуют два решения. Для задач с высокой производительностью типа закачки азота в пласты для повышения нефтеотдачи применяют многоплунжерные криогенные насосы, а для задач с малой производительностью применяют пневматические или пневмо-гидравлические дожимающие компрессорные агрегаты. Наша компания предлагает такие агрегаты собственного производства с рабочим давлением до 4100 бар. Они успешно эксплуатируются в различных отраслях промышленности в основном для научных исследований и испытаний.

Сжиженные углеводородные газы

Сжиженный углеводородный газ (СУГ) — это углеводороды или их смеси, которые при нормальном давлении и температуре окружающего воздуха находятся в газообразном состоянии, но при увеличении давления на относительно небольшую величину без изменения температуры переходят в жидкое состояние.

Сжиженные газы получают из попутных нефтяных газов, а также газоконденсатных месторождений. На перерабатывающих заводах из них извлекают этан, пропан, а также газовый бензин. Наибольшую ценность для отрасли газоснабжения имеют пропан и бутан. Их главное преимущество в том, что их легко хранить и перевозить в виде жидкости, а использовать в виде газа. Другими словами, для перевозки и хранения сжиженных газов используются плюсы жидкой фазы, а для сжигания — газообразной.

Сжиженный углеводородный газ получил широкое применение во многих странах мира, включая Россию, для нужд промышленности, жилищного и коммунально-бытового сектора, нефтехимических производств, а также в качестве автомобильного топлива.

Молекула пропана состоит из трех атомов углерода и восьми атомов водорода

Для систем газоснабжения, эксплуатируемых в России, наиболее подходящим является технический пропан (C3H8), так как он имеет высокую упругость паров вплоть до минус 35°C (температура кипения пропана при атмосферном давлении — минус 42,1°C). Даже при низких температурах из баллона или газгольдера, наполненного пропаном, легко отбирать нужное количество паровой фазы в условиях естественного испарения. Это позволяет устанавливать газовые баллоны со сжиженным пропаном на улице зимой и отбирать паровую фазу при низких температурах.

Бутан

При сгорании молекулы бутана в реакцию вступают четыре атома углерода и десять атомов водорода, что объясняет его большую теплотворную способность по сравнению с пропаном

Бутан (C4H10) — более дешевый газ, но отличается от пропана низкой упругостью паров, поэтому применяется только при положительных температурах. Температура кипения бутана при атмосферном давлении — минус 0,5°C.

Температура газа в резервуарах системы автономного газоснабжения должна быть положительной, иначе испарение бутановой составляющей СУГ будет невозможно. Для обеспечения температуры газа выше 0°C используется геотермальное тепло: газгольдер для частного дома устанавливается подземно.

Смесь пропана и бутана

В коммунально-бытовой сфере используется смесь пропана и бутана технических (СПБТ), в быту называемая пропан-бутаном. При содержании бутана в СПБТ свыше 60% бесперебойная работа резервуарных установок в климатических условия России невозможна. В таких случаях для принудительного перевода жидкой фазы в паровую применяются испарители СУГ.

Особенности и свойства СУГ

Свойства сжиженных газов влияют на меры безопасности, а также конструктивные и технические особенности оборудования, в котором они хранятся, перевозятся и используются.

Отличительные особенности сжиженных газов:

  • высокая упругость паров;
  • не имеют запаха. Для своевременного выявления утечек сжиженным газам придают специфический запах — производят одоризацию этилмер-каптаном (C2H5SH);
  • невысокие температуры и пределы воспламеняемости. Температура воспламенения бутана — 430°C, пропана — 504°C. Нижний предел воспламеняемости пропана — 2,3%, бутана — 1,9%;
  • пропан, бутан и их смеси тяжелее воздуха. В случае утечки сжиженный газ может скапливаться в колодцах или подвалах. Запрещается устанавливать оборудование, работающее на сжиженном газе, в помещениях подвального типа;
  • переход в жидкую фазу при увеличении давления или уменьшении температуры;
  • высокая теплотворная способность. Для сжигания СУГ необходимо большое количество воздуха (для сжигания 1 м³ газовой фазы пропана необходимо 24 м³ воздуха, а бутана — 31 м³ воздуха);
  • большой коэффициент объемного расширения жидкой фазы (коэффициент объемного расширения жидкой фазы пропана в 16 раз больше, чем у воды). Баллоны и резервуары заполняются не более чем на 85% геометрического объема. Заполнение более чем на 85% может привести к их разрыву, последующему быстрому истечению и испарению газа, а также воспламенению смеси с воздухом;
  • в результате испарения 1 кг жидкой фазы СУГ при н. у. получается 450 литров паровой фазы. Другими словами, 1 м³ паровой фазы пропан-бутановой смеси имеет массу 2,2 кг;
  • при сгорании 1 кг пропан-бутановой смеси выделяется около 11,5 кВт×ч тепловой энергии;
  • сжиженный газ интенсивно испаряется и, попадая на кожу человека, вызывает обморожение.

Зависимость давления насыщенных паров пропан-бутановой смеси от температуры

Зависимость давления насыщенных паров пропан-бутановой смеси от температуры

Зависимость плотности пропан-бутановой смеси от ее состава и температуры

Таблица плотностей сжиженной пропан-бутановой смеси (в т/м³) в зависимости от ее состава и температуры

T — температура газовой смеси (среднесуточная температура воздуха); P/B — соотношение пропана и бутана в смеси, %

FILED UNDER : Статьи

Submit a Comment

Must be required * marked fields.

:*
:*